

INDIAN SCHOOL AL WADI AL KABIR

Dept. of Mathematics 2024 – 2025

Class XII – Mathematics Work Sheet – Vector Algebra

1	If a unit vector \vec{a} makes angles $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ with \hat{j} and an angle θ with \hat{k} , then find the value of θ
2	Find the direction cosines of the vector joining the points A $(1, 2, -3)$ and $B(-1, -2, 1)$ directed from B to A.
3	Find the magnitude of each of the two vectors \vec{a} and \vec{b} , having the same magnitude such that the angle between them is 60^0 and their scalar product is $\frac{9}{2}$.
4	Find the projection of $\vec{a} = 2\hat{\imath} - \hat{\jmath} + \hat{k}$ on $\vec{b} = \hat{\imath} - 2\hat{\jmath} + \hat{k}$
5	Find $ \vec{x} $, if for a unit vector \vec{a} , $(\vec{x} - \vec{a})$. $(\vec{x} + \vec{a}) = 15$
6	Find a unit vector in the direction of $\vec{a} + \vec{b}$ where $\vec{a} = -\hat{\imath} + \hat{\jmath} + \hat{k}$ and $\vec{b} = 2\hat{\imath} + \hat{\jmath} - 3\hat{k}$
7	If $ \vec{a} = 13$, $ \vec{b} = 5$ and $\vec{a} \cdot \vec{b} = 60$, then find $ \vec{a} \times \vec{b} $
8	For what values of μ , the vectors $\vec{a} = 2 \hat{\imath} + \mu \hat{\jmath} + \hat{k}$ and $\vec{b} = \hat{\imath} - 2 \hat{\jmath} + 3 \hat{k}$ are perpendicular to each other?
9	Find the area of the parallelogram, whose diagonals are $\vec{d} 1 = 5\hat{\imath}$ and $\vec{d}_2 = 2\hat{\jmath}$.
10	Find the value of 'p' for which vectors $3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\hat{i} - 2p\hat{j} + 3\hat{k}$ are parallel.
11	Find the position vector of the point which divides the join of the points with position vectors \overrightarrow{a} + $3\overrightarrow{b}$ and \overrightarrow{a} – \overrightarrow{b} internally in the ratio 1 : 3.
12	Find the vector in the direction of the vector $\hat{\imath}-2\hat{\jmath}+2\hat{k}$ that has magnitude 9.
13	Find the direction cosines of the vector $\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$.
14	Find the value of $a + b$, if the point $(2, a, 3)$, $(3, -5, b)$ and $(-1, 11, 9)$ are collinear.
15	Find a unit vector perpendicular to the plane of the triangle ABC, where the coordinates of its vertices are A $(3,-1,2)$, B $(1,-1,-3)$ and C $(4,-3,1)$.

- The scalar product of the vector $\vec{a} = \hat{i} + \hat{j} + k$ with a unit vector along the sum of the vectors $\vec{b} = 2\hat{i} + 4\hat{j} 5\hat{k}$ and $\vec{c} = \lambda \hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ .
- Show that the direction cosines of avector equally inclined to the axes OX, OY and OZ are $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$.
- If $\vec{a} + \vec{b} + \vec{c} = 0$ and $|\vec{a}| = 3$, $|\vec{b}| = 5$ and $|\vec{c}| = 7$, show that the angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$.
- Find a unit vector perpendicular to each of the vectors $(\vec{a} + \vec{b})$ and $(\vec{a} \vec{b})$, where $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$ and $\vec{b} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$.
- If $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 400$ and $|\vec{a}| = 5$, then write the value of $|\vec{b}|$
- 21 The two adjacent sides of a parallelogram are $2\hat{i} 4\hat{j} + 5\hat{k}$ and $\hat{i} 2\hat{j} 3\hat{k}$. Find the unit vector parallel to one of its diagonals. Also, find its area.
- If \vec{a} and \vec{b} are two unit vectors inclined to x- axis at angles 45° and 135° respectively, then find the value of $|\vec{a} + \vec{b}|$.
- 23 If $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$ and $\vec{b} = \hat{\jmath} \hat{k}$, find a vector \vec{c} such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$.
- Show that the four points A, B, C and D with position vectors $4\hat{i} + 5\hat{j} + \hat{k}$, $-\hat{j} \hat{k}$, $3\hat{i} + 9\hat{j} + 4\hat{k}$ and $4(-\hat{i} + \hat{j} + \hat{k})$ respectively are coplanar.
- Find the value of λ if the points A(-1,4,-3),B(3, λ ,-5),C(-3,8,-5)and D(-3,2,1)are coplanar.
- If \vec{a} , \vec{b} and \vec{c} are three vectors such that $|\vec{a}| = 1$, $|\vec{b}| = 4$, $|\vec{c}| = 2$ and $\vec{a} + \vec{b} + \vec{c} = 0$, then find the value of μ , if $\mu = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$
- Let If \vec{a} , \vec{b} and \vec{c} are three vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 5$ and each one of them is perpendicular to the sum of other two, find $|\vec{a} + \vec{b} + \vec{c}|$
- Show that the points A, B, C with position vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} 3\hat{j} 5\hat{k}$ and $3\hat{i} 4\hat{j} 4\hat{k}$ respectively, are the vertices of a right- angled triangle. Hence find the area of the triangle.
- The magnitude of the vector product of the vector $\hat{i} + \hat{j} + k$ with a unit vector along the sum of the vectors $2\hat{i} + 4\hat{j} 5\hat{k}$ and $\vec{c} = \lambda \hat{i} + 2\hat{j} + 3\hat{k}$ is equal to $\sqrt{2}$. Find the value of λ .
- Let $\vec{a} = \hat{\imath} + 4\hat{\jmath} + 2\hat{k}$, $\vec{b} = 3\hat{\imath} 2\hat{\jmath} + 7\hat{k}$ and $\vec{c} = 2\hat{\imath} \hat{\jmath} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} , and $\vec{c} \cdot \vec{d} = 15$.

Answers

1	$\frac{\pi}{3}$
4	$\frac{5}{6}\sqrt{6}$
7	25
10	$-\frac{1}{3}$
13	$\frac{1}{\sqrt{14}}$, $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$
16	λ =1
21	$\frac{1}{7}(3\hat{\imath} - 6\hat{\jmath} + 2\hat{k})$ $11\sqrt{5} \text{ sq. unit}$
25	$\lambda = 2$
28	$\frac{1}{2}\sqrt{210}$

2	$\frac{1}{3}$, $\frac{2}{3}$, $\frac{-2}{3}$
5	4
8	5 2
11	$\overrightarrow{a} + 2\overrightarrow{b}$
14	a = -1, b = 1, a + b = 0
19	$-\frac{1}{\sqrt{6}}\hat{\imath} + \frac{1}{\sqrt{6}}\hat{\jmath} - \frac{1}{\sqrt{6}}\hat{k}$
22	. √2
26	$-\frac{21}{2}$
29	λ =1

3	$ \overrightarrow{a} = \overrightarrow{b} = 3$
6	$\frac{1}{3}(\hat{\imath}+2\hat{\jmath}-2\hat{k})$
9	5 sq.units
12	$3(\hat{\imath}-2\hat{\jmath}+2\hat{k})$
15	$\frac{1}{\sqrt{165}} \big(10\hat{\imath} + 7\hat{\jmath} - 4\hat{k}\big)$
20	4
23	$\vec{c} = \left(\frac{5}{3}\hat{\imath} + \frac{2}{3}\hat{\jmath} + \frac{2}{3}\hat{k}\right)$
27	$5\sqrt{2}$
30	$\frac{1}{3} \left(160 \hat{\imath} - 5 \hat{\jmath} + 70 \hat{k} \right)$